metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[dibromidozinc(II)]-μ-3-(1Hbenzimidazol-2-yl)[2,6-²H₂]pyridine *N*-oxide]

Hui-Zhou Luo and Heng-Yun Ye*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: hype@seu.edu.cn

Received 17 November 2007; accepted 17 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.034; wR factor = 0.072; data-to-parameter ratio = 17.7.

In the crystal structure of the title compound, $[ZnBr_2(C_{12}H_7D_2N_3O)]_n$, the Zn atoms are coordinated by two Br atoms and by one N atom and one O atom of two symmetry-related 3-(1H-benzimidazol-2-yl)[2,6-²H₂]pyridine *N*-oxide ligands in a slightly distorted tetrahedral geometry. The ZnBr₂ units are connected by the organic ligands into chains.

Related literature

For the deuteration effect (DEF) on physical properties, see: Akutagawa *et al.* (2004); Ye *et al.* (2007).

Experimental

Crystal data

 $\begin{bmatrix} \text{ZnBr}_2(\text{C}_{12}\text{H}_7\text{D}_2\text{N}_3\text{O}) \end{bmatrix} & V = 1339.2 \text{ (5) } \text{Å}^3 \\ M_r = 438.42 & Z = 4 \\ \text{Monoclinic, } P2_1/n & \text{Mo } K\alpha \text{ radiation} \\ a = 7.4071 \text{ (15) } \text{\AA} & \mu = 7.79 \text{ mm}^{-1} \\ b = 15.017 \text{ (3) } \text{\AA} & T = 293 \text{ (2) K} \\ c = 12.174 \text{ (2) } \text{\AA} & 0.2 \times 0.15 \times 0.1 \text{ mm} \\ \beta = 98.52 \text{ (3)}^{\circ} \\ \end{bmatrix}$

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.261, T_{max} = 0.463$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 173 parameters $wR(F^2) = 0.072$ H-atom parameters constrainedS = 1.09 $\Delta \rho_{max} = 0.43$ e Å⁻³3070 reflections $\Delta \rho_{min} = -0.57$ e Å⁻³

13680 measured reflections

 $R_{\rm int} = 0.058$

3070 independent reflections

2538 reflections with $I > 2\sigma(I)$

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1999); software used to prepare material for publication: *SHELXTL*

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2082).

References

- Akutagawa, T., Takeda, S., Hasegawa, T. & Nakamura, T. (2004). J. Am. Chem. Soc. 126, 291–294.
- Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1999). *SHELXTL/PC*. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ye, Q., Zhao, H., Qu, Z.-R., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Hong Chan, P. W. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852– 6856.

supplementary materials

Acta Cryst. (2008). E64, m248 [doi:10.1107/S1600536807067281]

catena-Poly[[dibromidozinc(II)]-^{*μ*}-3-(1*H*-benzimidazol-2-yl)[2,6-²H₂]pyridine *N*-oxide]

H.-Z. Luo and H.-Y. Ye

Comment

Recently, investigations on the effect of deuteration onto the physical properties like permittivity has become of increasing interest (Akutagawa, *et al.*, 2004) and (Ye, *et al.*, 2007). As a part of our ongoing investigations in this field we have determined the crystal structure of the title compound, poly bis(bromo)-(3-(1*H*-benzo[*d*]imidazole-2)–2,6-dideuterium-pyridine N-oxide)-zinc(II) (I).

In the crystal structure of the title compound the zinc atoms are coordinated by two bromo atoms and by one nitrogen atom and one oxygen atom of two symmetry related $3-(1H-\text{benzo}[d]\text{imidazole-2})-2,6-\text{dideuterium-pyridine ligands within slightly distorted tetrahedra (Fig. 1). The ZnBr₂ units are connected by the ligands into chains. The dihedral angle between the <math>1H$ -benzo[d]imidazole and the pyridine ring amount to 35.87 (8) °.

Experimental

 $3-(1H-\text{benzo}[d]\text{imidazole-2})-2,6-\text{dideuterium-pyridine N-oxide (0.21 g 0.1 mmol) ZnBr₂ (0.027 g, 0.2 mmol), ethanol (0.8 ml) and water (0.4 ml) are transfered into a sealed Pyrex tube and heated at 100 °C for 2 d. On cooling colorless block-like crystals of the title compound are obtained, which are suitable for X-ray analysis.$

Refinement

For the refinement of the D atoms, the atomic scattering factors for H were used. All H and D atoms were positioned with idealized geometry and were refined isotropic $U_{iso}(H) = 1.2Ueq(C \text{ or } N)$ using a riding model with d(C-H/D) = 0.93 and d(N-H) = 0.86 Å.

Figures

Fig. 1. Crystal structure of the title compound with the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level. The H and D atoms are shown as spheres of arbitrary size. Symmetry code: A = 1.5 + x, -1/2 + y, 1.5 + z.

catena-Poly[[dibromidozinc(II)]-µ-3-(1*H*-benzimidazol-2-yl)[2,6-\²H₂]pyridine N-oxide]

Crystal data
$[ZnBr_2(C_{12}H_7D_2N_3O)]$
$M_r = 438.42$

F(000) = 840 $D_x = 2.175 \text{ Mg m}^{-3}$

supplementary materials

Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.4071 (15) Å b = 15.017 (3) Å c = 12.174 (2) Å $\beta = 98.52$ (3)° V = 1339.2 (5) Å³ Z = 4

Data collection

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 12253 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 7.79 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.2 \times 0.15 \times 0.1 \text{ mm}$

Rigaku Mercury2 diffractometer	3070 independent reflections
Radiation source: fine-focus sealed tube	2538 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.058$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -19 \rightarrow 19$
$T_{\min} = 0.261, T_{\max} = 0.463$	$l = -15 \rightarrow 15$
13680 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.072$	$w = 1/[\sigma^2(F_o^2) + (0.0204P)^2 + 0.5716P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\text{max}} = 0.001$
3070 reflections	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
173 parameters	$\Delta \rho_{min} = -0.57 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0,0021 (2)

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0021 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.18024 (5)	0.76280 (2)	0.56995 (3)	0.02687 (12)
Br1	0.43934 (6)	0.68154 (3)	0.53737 (4)	0.05495 (15)
Br2	0.05935 (5)	0.71851 (2)	0.73359 (3)	0.03347 (12)
C1	0.2625 (4)	1.0321 (2)	0.4904 (3)	0.0270 (7)
C2	0.2551 (5)	1.0978 (2)	0.4096 (3)	0.0348 (8)
H2B	0.2762	1.1574	0.4277	0.042*
C3	0.2151 (5)	1.0700 (3)	0.3022 (3)	0.0376 (9)
H3A	0.2073	1.1119	0.2455	0.045*
C4	0.1855 (5)	0.9800 (3)	0.2749 (3)	0.0376 (9)
H4A	0.1610	0.9638	0.2004	0.045*
C5	0.1914 (5)	0.9149 (2)	0.3545 (3)	0.0333 (8)
H5A	0.1712	0.8554	0.3357	0.040*
C6	0.2292 (4)	0.9425 (2)	0.4644 (3)	0.0255 (7)
C7	0.2883 (4)	0.9521 (2)	0.6446 (3)	0.0242 (7)
C8	0.4011 (4)	0.8528 (2)	0.8000 (3)	0.0258 (7)
D2	0.4465	0.8148	0.7503	0.031*
C9	0.3176 (4)	0.9318 (2)	0.7629 (3)	0.0235 (7)
C10	0.2589 (4)	0.9895 (2)	0.8391 (3)	0.0290 (8)
H10A	0.2069	1.0440	0.8160	0.035*
C11	0.2781 (5)	0.9656 (2)	0.9485 (3)	0.0326 (8)
H11A	0.2391	1.0038	1.0003	0.039*
C12	0.3550 (4)	0.8850 (2)	0.9822 (3)	0.0312 (8)
D1	0.3645	0.8679	1.0562	0.037*
N1	0.2441 (3)	0.89347 (17)	0.5628 (2)	0.0246 (6)
N2	0.2984 (4)	1.03547 (18)	0.6041 (2)	0.0299 (6)
H2A	0.3232	1.0828	0.6431	0.036*
N3	0.4165 (4)	0.83101 (18)	0.9080 (2)	0.0282 (6)
01	0.4873 (3)	0.75130 (15)	0.9391 (2)	0.0386 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0340 (2)	0.0198 (2)	0.0252 (2)	-0.00331 (15)	-0.00104 (17)	-0.00046 (15)
Br1	0.0509 (3)	0.0317 (2)	0.0885 (4)	0.00727 (18)	0.0311 (2)	0.0069 (2)
Br2	0.0438 (2)	0.0292 (2)	0.0269 (2)	-0.00230 (15)	0.00361 (15)	0.00400 (14)
C1	0.0279 (18)	0.0246 (18)	0.0273 (19)	-0.0010 (13)	0.0006 (14)	0.0017 (14)
C2	0.044 (2)	0.0230 (19)	0.038 (2)	-0.0001 (15)	0.0108 (16)	0.0038 (15)
C3	0.037 (2)	0.042 (2)	0.035 (2)	0.0040 (17)	0.0088 (16)	0.0182 (17)
C4	0.041 (2)	0.048 (3)	0.024 (2)	-0.0048 (17)	0.0054 (16)	0.0033 (17)
C5	0.041 (2)	0.030 (2)	0.028 (2)	-0.0040 (16)	0.0037 (15)	-0.0001 (15)
C6	0.0269 (17)	0.0226 (18)	0.0269 (19)	-0.0018 (13)	0.0038 (13)	0.0011 (14)
C7	0.0261 (17)	0.0191 (17)	0.0267 (18)	0.0004 (13)	0.0015 (13)	0.0009 (13)

supplementary materials

C8	0.0300 (18)	0.0231 (18)	0.0225 (18)	-0.0030 (13)	-0.0019 (13)	-0.0046 (13)
C9	0.0239 (16)	0.0234 (18)	0.0220 (17)	-0.0039 (13)	-0.0007 (13)	-0.0014 (13)
C10	0.0313 (19)	0.0235 (19)	0.032 (2)	0.0028 (14)	0.0031 (15)	-0.0008 (14)
C11	0.038 (2)	0.032 (2)	0.027 (2)	0.0069 (15)	0.0039 (15)	-0.0022 (15)
C12	0.038 (2)	0.032 (2)	0.0216 (18)	0.0032 (15)	-0.0007 (14)	-0.0005 (15)
N1	0.0303 (15)	0.0196 (14)	0.0218 (15)	-0.0021 (11)	-0.0024 (11)	-0.0004 (11)
N2	0.0447 (18)	0.0187 (15)	0.0247 (16)	-0.0034 (12)	0.0002 (13)	-0.0023 (11)
N3	0.0295 (15)	0.0227 (15)	0.0284 (16)	0.0003 (11)	-0.0092 (12)	-0.0007 (12)
01	0.0521 (16)	0.0247 (14)	0.0333 (15)	0.0125 (11)	-0.0125 (12)	-0.0008 (10)
Geometric para	meters (Å, °)					
Zn1—O1 ⁱ		1.987 (2)	С7—	-N1	1.33	3 (4)
Zn1—N1		2.023 (3)	С7—	-N2	1.35	2 (4)
Zn1—Br1		2.3569 (7)	С7—	-C9	1.45	7 (4)
Zn1—Br2		2.3960 (7)	C8—	-N3	1.34	3 (4)
C1—N2		1.371 (4)	C8—	-C9	1.38	3 (4)
C1—C2		1.388 (5)	C8—	-D2	0.93	00
C1—C6		1.397 (4)	С9—	-C10	1.38	5 (4)
C2—C3		1.362 (5)	C10-	C11	1.36	7 (5)
C2—H2B		0.9300	C10-	-H10A	0.93	00
C3—C4		1.402 (5)	C11-	C12	1.37	3 (5)
С3—НЗА		0.9300	C11-	-H11A	0.93	00
C4—C5		1.372 (5)	C12-	N3	1.34	3 (4)
C4—H4A		0.9300	C12-	D1	0.93	00
C5—C6		1.389 (4)	N2—	-H2A	0.86	00
C5—H5A		0.9300	N3—	-01	1.33	9 (3)
C6—N1		1.397 (4)	01—	-Zn1 ⁱⁱ	1.98	7 (2)
O1 ⁱ —Zn1—N1		102.35 (10)	N2—	-С7—С9	123.	1 (3)
O1 ⁱ —Zn1—Br1		108.47 (8)	N3—	-C8—C9	119.	8 (3)
N1—Zn1—Br1		107.08 (8)	N3—	-C8—D2	120.	1
$O1^{i}$ —Zn1—Br2		108.89 (8)	С9—	-C8—D2	120.	1
N1-Zn1-Br2		115.04 (8)	C8—	-C9—C10	119.3	2 (3)
Br1-Zn1-Br2		114.22 (3)	C8—	-C9—C7	119.1	7 (3)
N2—C1—C2		132.1 (3)	C10-	C9C7	121.	1 (3)
N2—C1—C6		105.4 (3)	C11-	С10С9	119.1	3 (3)
C2—C1—C6		122.5 (3)	C11-		120.	3
C3—C2—C1		116.3 (3)	С9—	-C10—H10A	120.1	3
С3—С2—Н2В		121.9	C10-	C11C12	120.	1 (3)
C1—C2—H2B		121.9	C10-		120.	0
C2—C3—C4		121.8 (3)	C12-		120.	0
С2—С3—НЗА		119.1	N3—	-C12—C11	119.	9 (3)
С4—С3—Н3А		119.1	N3—	-C12—D1	120.	0
C5—C4—C3		122.1 (3)	C11-		120.	0
С5—С4—Н4А		119.0	С7—	-N1—C6	105.	8 (3)
C3—C4—H4A		119.0	С7—	N1—Zn1	129.	9 (2)
C4—C5—C6		116.7 (3)	С6—	N1—Zn1	123.	9 (2)
C4—C5—H5A		121.6	С7—	-N2—C1	108.	7 (3)

С6—С5—Н5А	121.6	C7—N2—H2A	125.6
C5—C6—N1	130.5 (3)	C1—N2—H2A	125.6
C5—C6—C1	120.6 (3)	O1—N3—C12	120.5 (3)
N1—C6—C1	108.9 (3)	O1—N3—C8	117.9 (3)
N1—C7—N2	111.1 (3)	C12—N3—C8	121.6 (3)
N1—C7—C9	125.8 (3)	N3—O1—Zn1 ⁱⁱ	121.83 (19)

Symmetry codes: (i) x-1/2, -y+3/2, z-1/2; (ii) x+1/2, -y+3/2, z+1/2.

